
28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 1/10

Introduction / Good practices in C++

This guide will attempt to summarize good practices to use and bad practices to avoid when

writing C++ code in the context of ROS, robotics and research. The guide is mainly targeted at

people who are coming to C++ from C or who are still using old-style C++ (e.g. raw pointers). You

don’t have to read every last word as some of the sections deal with quite specific topics (e.g.

multithreading). I do recommend at least skimming through the whole page to check for anything

that’s new or that might be useful for you. At the minimum, check out the sections related to

smart pointers and the general tips.

A list of the main tackled topics is:

Some useful C++ libraries.

Avoid raw pointers, new , malloc , etc. like the devil.

Take function parameters by constant referece (or constant copy in case of primitive types).

Use the native multithreading and thread synchronization tools.

ROS-related coding practices.

Other tips and remarks.

Further reading.

If you spot any errors, don’t understand something or have ideas for improevments, feel free to

contact me at matous.vrba (at) fel.cvut.cz .

Before implementing basically anything, first check that a suitable implementation doesn’t

already exist (this goes for scientific research as well - do your research before you start

reinventing the wheel 😀)! Typically, using an already existing and optimized implementation is

not only easier and faster than implementing your own, but also the code will be faster and bug-

free. A list of useful C++ libraries that you might need with links to their documentation pages

follows:

Good practices in modern C++ for the
purposes of MRS

•

•

•

•

•

•

•

Useful libraries

https://ctu-mrs.github.io/
https://ctu-mrs.github.io/docs/introduction/

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 2/10

The standard C++ library: Implements many useful algorithms, tools and utilities. Part of the

C++ standard. Learn it and learn to use it!

https://en.cppreference.com/w/

roscpp: The main ROS C++ API.

https://docs.ros.org/en/noetic/api/roscpp/html/

tf2_ros: The ROS tf2 library API, implementing coordinate transformations and related stuff.

https://docs.ros.org/en/noetic/api/tf2_ros/html/c++/

Eigen: Linear algebra, basic geometry and other matrix-related stuff (ROS has compatible

interfaces).

https://eigen.tuxfamily.org/dox/index.html

OpenCV: Computer vision and image processing (ROS has compatible interfaces).

https://docs.opencv.org/4.2.0/

PCL: Point cloud processing (ROS has compatible interfaces).

https://pointclouds.org/documentation/

Boost: General C++ library implementing many tools, algorithms and utilities (used internaly in

ROS).

https://www.boost.org/doc/libs/1_71_0/

mrs_lib : Our own MRS library implementing some algorithms (e.g. various Kalman filters), ROS

wrappers (e.g. for parameter loading) and other utilities (e.g. a 3D geometry library).

https://ctu-mrs.github.io/mrs_lib/

Most of these libraries already come pre-installed with ROS or our UAV system and we use them,

so we can help you in case you encounter any problems (don’t be afraid to ask).

In C, raw pointers are a crucial tool for many tasks, which include management of dynamic

memory, passing around large data structures and data ownership management. Many of these

problems may be tackled using more focused tools in C++, significantly simplifying and clarifying

the code and making it less error-prone.

In many cases, pointers may be avoided altogether in C++ by using references, especially when

passing function parameters (see the next section). However, references are useful in other cases

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Dynamic memory management

References

https://en.cppreference.com/w/
https://docs.ros.org/en/noetic/api/roscpp/html/
https://docs.ros.org/en/noetic/api/tf2_ros/html/c++/
https://eigen.tuxfamily.org/dox/index.html
https://docs.opencv.org/4.2.0/
https://pointclouds.org/documentation/
https://www.boost.org/doc/libs/1_71_0/
https://ctu-mrs.github.io/mrs_lib/

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 3/10

as well. Consider the following scenario, where you want to transform the fifth element of the

container cont :

cont.at(102) = 10 + 3*cont.at(102) + 0.1*cont.at(102)*cont.at(102);

Here, the at() method of the cont object is called four times, which may be quite costly e.g. in

the case of a linked-list, and is error-prone (a single typo in the index number can break this code).

A cleaner version may be obtained using references:

auto& cur_el = cont.at(102);

cur_el = 10 + 3*cur_el + 0.1*cur_el*cur_el;

The reference also avoids unnecessary copying of the container element (which is important if it’s

a large data structure). This approach is often employed in range-based for loops, so it’s good to

understand it well.

Note: Watch out for dangling references (references to variables which went out of scope) These

typically happen when returning a reference to a local variable from a function, which is a no-no.

For dynamic memory and data ownership management in modern C++ is done using the so-called

smart pointers (and yes, they are pretty clever). You should not use the keywords new nor delete

(and definitely not malloc() nor free()) in almost any case in modern C++! This functionality

is replaced by smart pointers, which are safer, more user-friendly and less error-prone. There

are three types of smart pointers:

The unique pointer is the most basic smart pointer. It is the sole and only owner of the

memory it points to (hence the name). The memory is allocated on construction of the

std::unique_ptr object and freed at its destruction, so the user doesn’t have to worry about

calling new nor delete (and definitely not malloc() nor free()). The unique pointer is the most

safe and efficient one, but it’s quite restrictive as it cannot be copied or copy-constructed (that

would break the unique ownership of its data).

The shared pointer is the most common smart pointer you will encounter. It works similarly as

the unique pointer, but has a counter which is incremented at each copying of the pointer and

decremented at each destructor call. This counter counts how many pointers point to the

respective memory and when it reaches zero (the last std::shared_ptr pointing to this memory

is destroyed), the memory is freed. The thread-safe incrementation/decrementation of the

counter makes the std::shared_ptr a bit less efficient than the std::unique_ptr , but it can be

Smart pointers

•

•

https://en.cppreference.com/w/cpp/language/reference#Dangling_references
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/shared_ptr

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 4/10

freely copied, destroyed, shared between threads etc. (although synchronization is still

required for accessing the data being pointed to!).

The weak pointer is a non-owning pointer to a memory. It neither allocates nor destroys

memory and before the pointed-to memory may be used, it has to be locked, which returns a

new std::shared_ptr . Otherwise, the memory it points to is owned and allocated/deallocated

by a different shared pointer (see the example at cppreference).

For most of our applications, you will utilize only the shared pointers. Note that ROS uses the

Boost implementation (boost::shared_ptr) instead of the standard library implementation for

legacy reasons (this is fixed in ROS2). Luckily, the Boost shared pointer works identically to the

standard library (although they cannot be converted to each other’s type).

When instantiating a std::shared_ptr , use the std::make_shared<T>() function, which takes the

object T ’s constructor parameters as arguments - e.g.:

class Bar

{

public:

 Bar(const int number, const std::string& text)

 : m_number(number), m_text(text)

 {};

private:

 int m_number;

 std::string m_text;

};

std::shared_ptr<Bar> obj_ptr = std::make_shared<Bar>(666, "foo");

Similarly for std::unique_ptr and std::make_unique .

The rules of thumb when defining function parameters is:

•

Function parameters

If you’re taking a primitive type as a parameter (e.g. int , float , bool etc.), use a constant copy:

bool foo(const int a, const float b);

1

If you’re taking a class/struct, use a constant reference:2

https://en.cppreference.com/w/cpp/memory/weak_ptr
https://en.cppreference.com/w/cpp/memory/weak_ptr#Example
https://www.boost.org/doc/libs/1_75_0/libs/smart_ptr/doc/html/smart_ptr.html#shared_ptr

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 5/10

class Bar, Baz;

Bar foo(const int a, const Baz& b);

If you need to return multiple variables, there are several possibilities:

std::tuple<bool, float> foo(const int a)

{

 if (a > 0)

 return {true, 0.1*a};

 else

 return {false, a};

}

// preffered way since it's clearer what is input and what output

// and all can be const, avoiding accidental modification

const int a = 5;

const auto [c, b] = foo(a);

or

bool foo(const int a, float& ret_b)

{

 if (a > 0)

 {

 ret_b = 0.1*a;

 return true;

 }

 else

 {

 return false;

 }

}

// less elegant and less clear way, but valid

const int a = 5;

float b;

const bool c = foo(a, b);

3

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 6/10

There are three types of synchronization mechanisms for multi-threading in C++:

Other remarks regarding multi-threading in C++:

In general, do not use volatile (unless working with a microcontroller where you really need

it or other platform-specific cases, which generally don’t concern us). Note that volatile does

NOT ensure thread safety - for these cases, use std::atomic<T> (which also much better

communicates your intention to the compiler as well as to any potential readers of the code)!

The condition variable may sound very similar to mutex, but actually isn’t. A mutex is intended

to keep two threads from using the same resource (i.e. a data race), whereas a condition

variable is used to suspend a thread until a resource becomes available. You may think of it

this way:

If you want to modify a parameter passed to a function (e.g. use the function to update an

object’s value), use a reference, but make this clear (ideally by naming of the function and the

parameters):

void append_squared(std::vector<float>& to, const float new_val)

{

 to.push_back(new_val*new_val);

}

4

Thread synchronization

Atomic variable: If you have a single primitive-type variable which you want to access and

modify from multiple threads in a thread-safe manner (e.g. some counter or a flag that a

thread is running), use std::atomic<T> . See also the mrs_lib::AtomicScopeFlag helper class for

automatic atomical setting and unsetting a flag (boolean variable).

1

Mutex: For cases where multiple threads modify/read a common resource (e.g. an std::vector

or other data), use std::mutex and std::lock_guard to synchronize the access and prevent data

races. See an example on cppreference.com.

2

Condition variable: The std::condition_variable is useful in cases when a thread (or multiple

threads) has to wait for another thread to generate a resource to be consumed by the waiting

thread (threads). In the context of ROS, this may be waiting until a message on some topic

arrives for your thread to process (this is implemented in the mrs_lib::SubscribeHandler ’s

waitForNew() method). See an example on cppreference.com.

3

•

•

https://en.cppreference.com/w/c/language/volatile#Uses_of_volatile
https://ctu-mrs.github.io/mrs_lib/classmrs__lib_1_1AtomicScopeFlag.html
https://en.cppreference.com/w/cpp/thread/mutex
https://en.cppreference.com/w/cpp/thread/lock_guard
https://en.cppreference.com/w/cpp/thread/lock_guard#Example
https://ctu-mrs.github.io/mrs_lib/classmrs__lib_1_1SubscribeHandler.html#a4d2789e1f6172c5ff9e496af55aab5e1
https://en.cppreference.com/w/cpp/thread/condition_variable#Example

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 7/10

By default, a mutex is unlocked and any thread can lock it. Any other thread then has to

wait for the first one to release it again.

By default, a condition variable is unavailable and no thread can use it. Any thread may wait

for the condition variable (and atomically lock it when it becomes available). Any thread

may notify a single or all threads waiting on the condition variable that it has become

available (thus waking them).

To get started with ROS, check out the official roscpp tutorials and our example ROS packages:

example_ros_uav - general ROS package, demonstrating some basic concepts.

example_ros_vision - a computer vision ROS package, demonstrating some basic CV stuff. Go

through the code of these examples and try to understand it (you can skip the vision package

if you won’t be working on CV). Read their README - especially the Coding style and

Coding practices parts, which contain useful information related to using C++ in the context of

ROS and the roscpp API.

Also be sure to check out the available ROS helpers in our mrs_lib C++ library. Namely, these

helpers are good to use to improve code clarity and robustness:

ParamLoader : Loading of parameters from the rosparam server, checking of parameters being

loaded correctly, automatic printing of the loaded values.

SubscribeHandler : Subscription to ROS topics with automatic printing when no messages were

received for a specified timeout. Threadsafe blocking waiting (with timeout) for new

messages or callbacks or flag-checking for new messages.

Transformer : ROS transformations wrapper for easier transformation lookup, one-time or

repeated transformation of various types including handling of the special GPS UTM frame

(specification of points in lat/lon coordinates).

ScopeTimer : Simple scope-based profiling tool (like tic-toc and similar) for timing of duration

of various processes.

Turn on -Wall and write your code to emit no warnings. The warnings are there to tell you

about potential code smell (not to annoy you), so do not ignore them.

Do not use the NULL macro, use the nullptr pointer literal. NULL may be defined to be the

integer literal 0 according to the standard, which makes some unexpected implicit

•

•

ROS-related coding practices

•

•

•

•

•

•

Other tips and remarks
•

•

http://wiki.ros.org/roscpp/Tutorials
https://github.com/ctu-mrs/example_ros_uav
https://github.com/ctu-mrs/example_ros_vision
https://github.com/ctu-mrs/example_ros_uav#coding-style
https://github.com/ctu-mrs/example_ros_vision#coding-practices
https://github.com/ctu-mrs/mrs_lib/
https://ctu-mrs.github.io/mrs_lib/classmrs__lib_1_1ParamLoader.html
https://ctu-mrs.github.io/mrs_lib/classmrs__lib_1_1SubscribeHandler.html
https://ctu-mrs.github.io/mrs_lib/classmrs__lib_1_1Transformer.html
https://ctu-mrs.github.io/mrs_lib/classmrs__lib_1_1ScopeTimer.html

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 8/10

conversions possible when using NULL . nullptr can never be implicitly converted to int ,

making it safer.

Use const whenever possible. This way you will avoid accidentally modifying variables which

are not supposed to be modified and enable the compiler to better optimize.

Use std::numeric_limits instead of the INT_MAX , DBL_MAX , etc. macros. In general, you should

avoid macros whenever possible. Watch out for std::numeric_limits<T>::min vs.

std::numeric_limits<T>::lowest ! The ::min function returns the smallest positive value (not the

lowest - therefore negative - value, which is returned by ::lowest) for floating types (this

behavior is the same for the macros such as FLT_MIN by the way).

Shorten long typenames that you use repeatedly with the using aliasing to improve code

readability.

Learn and use the gdb debugger (see our short introduction).

Learn to use the C++ reference documentation and consult it whenever you use a new thing

from the standard library.

Use documentation in general. Do not guess what stuff does or how it’s called. Find the

documentation of whatever library you’re working with, bookmark it, read it and use it. Also

learn to use the search tool (the input field on the top-right) in Doxygen-generated pages.

C++ is a typed language, meaning that the type of any variable in the program has to be known at

compilation. This has many advantages and enables very powerful compile-time sanitization and

error-checking as well as performance improvements and optimizations, but the language can

become extremely verbose even to the point of reduced readability (this is especially the case

when using templates and the standard library). Enter the auto keyword.

auto loosely translates to “dear Mr. compiler, please substitute this word with the appropriate

deduced type during compilation”. For example, instead of writing the whole type of a

std::vector iterator such as

const std::vector<float> cont = init_container();

for (std::vector<float>::const_iterator it = std::cbegin(cont); it != std::cend(cont); it++)

{

 // do stuff with it

}

you can simplify this code without loosing expressivity to

•

•

•

•

•

•

Automatic type deduction

https://en.cppreference.com/w/cpp/types/numeric_limits/min
https://en.cppreference.com/w/cpp/types/numeric_limits/lowest
https://en.cppreference.com/w/cpp/language/type_alias
https://ctu-mrs.github.io/docs/software/gdb.html
https://en.cppreference.com/
https://en.cppreference.com/w/cpp/language/auto

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 9/10

const std::vector<float> cont = init_container();

for (auto it = std::cbegin(cont); it != std::cend(cont); it++)

{

 // do stuff with it

}

Note that auto should not be overused at the cost of code readability.

A rule of thumb: If the typename can be automatically deduced by the compiler and it is long, too

verbose and the type is clear from the context or variable naming, substitute it with auto .

Since C++11, the range-based for loops syntactic sugar is available. Specifically, the following

syntax is legal for any container that implements the begin() and end() methods according to the

standard (e.g. std::vector , std::forward_list , pcl::PointCloud , cv::Mat etc.):

for (const auto& element : container)

{

 // do stuff with element

 if (element > 0)

 sum += element;

}

If you want to modify the elements, just drop the const keyword:

for (auto& element : container)

{

 // do stuff with element

 if (element > 0)

 element += offset;

}

I recommend using this syntax whenever applicable as it’s more expressive and less verbose and

error-prone than classic iteration or C++ iterator-based iteration.

A rule of thumb:

Range-based loops

https://en.cppreference.com/w/cpp/language/range-for

28/03/2022, 00:25 Good practices in C++ - Multi-robot Systems Group UAV System

https://ctu-mrs.github.io/docs/introduction/c_to_cpp.html 10/10

If you do not need to know the iterator inside the for loop and only need to access/modify

the elements, use a range-based for loop:

for (const auto& element : container)

If you need to use the iterator inside the loop body, use an iterator-based for loop:

for (size_t it = 0; it < container.size(); it++)

or

// if you need to modify the elements, use std::begin() and std::end() instead

for (auto it = std::cbegin(container); it != std::cend(container); it++)

The C++ Best Practices site from Jason Turner are a good general overview of C++

programming.

•

•

Further reading
•

http://cppbestpractices.com/

